Séance d'exercice n°6 Lausanne

Champ d'autocontrainte dans un cylindre

On considère un solide dont la configuration d'équilibre est un cylindre de révolution Ω de hauteur h et de rayon R constitué des points \underline{x} tels que $x^2+y^2\leq R^2$ et $0\leq z\leq h$ dans le repère $(0,\underline{e}_x,\underline{e}_y,\underline{e}_z)$. On suppose que les composantes du tenseur des contraintes $\underline{\sigma}$ dans ce repère s'écrivent

$$\sigma_{xx} = -A \left(R^2 - x^2 - 3y^2 \right), \quad \sigma_{xy} = -2 A x y, \quad \sigma_{yy} = -A \left(R^2 - 3x^2 - y^2 \right),$$

et $\sigma_{xz} = \sigma_{yz} = \sigma z z = 0.$

- 1. Dans quelles unités s'exprime la constante A? Sachant que le système est à l'équilibre, calculer les forces massiques \underline{b} .
- 2. On note $r = \sqrt{x^2 + y^2}$, $\underline{e}_r = (x \underline{e}_x + y \underline{e}_y)/r$ et $\underline{e}_\theta = (-y \underline{e}_x + x \underline{e}_y)/r$. Calculer $\underline{\sigma}.\underline{e}_r$ et $\underline{\sigma}.\underline{e}_\theta$. En déduire les composantes σ_{rr} , $\sigma_{\theta\theta}$, σ_{zz} , $\sigma_{r\theta}$, σ_{rz} et $\sigma_{\theta z}$ dans le repère $(0,\underline{e}_r,\underline{e}_\theta,\underline{e}_z)$ des coordonnées cylindriques.
- 3. Calculer les forces surfaciques \underline{T}^d exercées sur le cylindre par son extérieur.
- 4. On suppose que A>0 mesure l'intensité du serrage qui conduit à l'état d'autocontraintes décrit par le tenseur des contraintes $\underline{\underline{\sigma}}$. Quelle est la valeur maximale de A lorsque le critère de rupture du matériau est gouverné par le critère de Tresca

$$f\left(\underline{\underline{\sigma}}\right) = \max_{i,j} |\sigma_i - \sigma_j| - \sigma_0 \le 0,$$

où σ_0 est une constante caractéristique du matériau et σ_i et σ_j les contraintes principales de $\underline{\sigma}$?

Solution:

1. Les contraintes $\underline{\underline{\sigma}}$ s'exprimant en Pa et les position x et y ainsi que le rayon R en m, alors la constante A s'exprime en \overline{Pa}/m^2 .

Puisque le système est à l'équilibre, on peut écrire $\rho \underline{b} = -\underline{\operatorname{div}}(\underline{\sigma})$. On en déduit alors $\underline{b} = \underline{0}$ puisque

$$\underline{\operatorname{div}}(\underline{\underline{\sigma}}) = \left(\frac{\partial \sigma_{xx}}{\partial x} + \frac{\partial \sigma_{xy}}{\partial y}\right) \underline{e}_x + \left(\frac{\partial \sigma_{xy}}{\partial x} + \frac{\partial \sigma_{yy}}{\partial y}\right) \underline{e}_y$$
$$= (2 A x - 2 A x) \underline{e}_x + (-2 A y + 2 A y) \underline{e}_y = \underline{0}$$

2. Le calcul des produits suivant :

$$\underline{\underline{\underline{\sigma}}} \cdot \underline{\underline{e}}_r = -\frac{Ax}{r} (R^2 - x^2 - 3y^2 + 2y^2) \underline{\underline{e}}_x - \frac{Ay}{r} (R^2 - 3x^2 - y^2 + 2x^2) \underline{\underline{e}}_y = -A(R^2 - r^2) \underline{\underline{e}}_r$$

$$\underline{\underline{\underline{\sigma}}} \cdot \underline{\underline{e}}_\theta = \frac{Ay}{r} (R^2 - x^2 - 3y^2 - 2x^2) \underline{\underline{e}}_x - \frac{Ax}{r} (R^2 - 3x^2 - y^2 - 2x^2) \underline{\underline{e}}_y = -A(R^2 - 3r^2) \underline{\underline{e}}_\theta$$

permet d'écrire le tenseur des contraintes sous la forme $\underline{\sigma} = \sigma_{rr} \underline{e}_r \otimes \underline{e}_r + \sigma_{\theta\theta} \underline{e}_{\theta} \otimes \underline{e}_{\theta}$ avec

$$\sigma_{rr} = -A(R^2 - r^2), \quad \sigma_{\theta\theta} = -A(R^2 - 3r^2) \quad \text{et} \quad \sigma_{zz} = \sigma_{r\theta} = \sigma_{rz} = \sigma_{\theta z} = 0$$

3. — Sur la surface S_h d'équation z=h et de normale sortante $\underline{e}_z,$ on a

$$\underline{T}^d = \underline{\sigma}.\underline{e}_z = \underline{0}$$

— Sur la surface S_0 d'équation z=0 et de normale sortante $-\underline{e}_z$, on a

$$\underline{T}^d = -\underline{\underline{\sigma}}.\underline{e}_z = \underline{0}$$

— Sur la surface cylindrique d'équation r=R et de normale sortante $\underline{e}_r,$ on a

$$\underline{T}^d = -\underline{\sigma}.\underline{e}_r = -A(R^2 - R^2)\underline{e}_r = \underline{0}$$

En conclusion, $\underline{T}^d = \underline{0}$ sur toute la frontière du cylindre.

4. Comme $\underline{\underline{\sigma}}$ est diagonale, alors ses contraintes principales sont $\sigma_I = \sigma_{rr} = -A(R^2 - r^2)$, $\sigma_{II} = \sigma_{\theta\theta} = -A(R^2 - 3r^2)$ et $\sigma_{III} = \sigma_{zz} = 0$.

 $-A(R^2-3r^2)$ et $\sigma_{III}=\sigma_{zz}=0$. Le maximum de $|\sigma_I-\sigma_{II}|=2Ar^2$, $|\sigma_I-\sigma_{III}|=A(R^2-r^2)$ et $|\sigma_{II}-\sigma_{III}|=A|R^2-3r^2|$ pour tous les $r\in[0,R]$ est $2AR^2$. pour éviter la rupture du solide, gouvernée par le critère de Tresca, il faut alors

$$2AR^2 - \sigma_0 \le 0 \Rightarrow A \le \frac{\sigma_0}{2R^2}$$